
Micromega Corporation 1 Revised 2012-04-17

Using the uM-FPU V3.1
Matrix Operations

Introduction
The uM-FPU V3 chip provides a number of instructions for operating on matrices and vectors. Matrices are defined
as a group of sequential uM-FPU registers organized by rows and columns. For example, the following diagram
shows a matrix of 2 rows and 4 columns.

0, 0 0, 1 0, 2

1, 0 1,1 1, 2

0, 3

1, 3

Row

0

Row

1

Col

0

Col

1

Col

2

Col

3

Matrices are stored in sequential uM-FPU V3 registers in row major order. The following list shows the storage
locations for a matrix of 2 rows and 4 columns starting at register 16.

Register 16 row 0, column 0
Register 17 row 0, column 1
Register 18 row 0, column 2
Register 19 row 0, column 3
Register 20 row 1, column 0
Register 21 row 1, column 1
Register 22 row 1, column 2
Register 23 row 1, column 3

Instruction Summary
The FPU has several special purpose instructions for working with matrices and vectors.

SELECTMA Select matrix A
SELECTMB Select matrix B
SELECTMC Select matrix C
LOADMA Load register 0 with value from matrix A
LOADMB Load register 0 with value from matrix B
LOADMC Load register 0 with value from matrix C
SAVEMA Save register 0 value to matrix A
SAVEMB Save register 0 value to matrix B
SAVEMC Save register 0 value to matrix C
MOP Matrix Operations

Since matrices and vectors are stored in FPU registers, any FPU instructions that reference registers can also be used
to access values in a matrix or vector. Register X can be used for sequential access.

Micromega Corporation 2 Using the uM-FPU V3.1 Matrix Operations

Matrix Operations

Matrix operations can involve one, two or three matrices which are referred to as MA, MB and MC. The
SELECTMA, SELECTMB and SELECTMC instructions are used to select the registers that define a matrix. The
starting register, the number of rows, and the number of columns are specified following the opcode. For example,
the following instruction selects MB as a matrix with 2 rows and 4 columns starting at register 16.

SELECTMB,16,2,4

Register X is also set to the first register of the matrix by the SELECTMA, SELECTMB, and SELECTMC instructions.
This makes it easy to use any of the register X instructions to quickly access the sequential registers in the matrix
(e.g. READX, WRITEX, XSAVE, LOADX, etc.). The elements in a matrix can be accessed directly by using the
specific register address for each element, or they can be accessed by row and column number using the LOADMA,
LOADMB, LOADMC, SAVEMA, SAVEMB and SAVEMC instructions.

The LOADMA, LOADMB and LOADMC instructions load register 0 with the value from a selected element in the
matrix. The following instruction loads register 0 with the value in row 1, column 2 of matrix MB (row and columns
numbers start at 0).

LOADMB,1,2

The SAVEMA, SAVEMB and SAVEMC instructions store the value in register 0 to the selected element in the matrix.
The following instruction saves the value in register 0 to row 1, column 2 of matrix MB.

SAVEMB,1,2

MOP instruction
The MOP (matrix operation) instruction performs all the matrix operations.

Scalar Operations
A scalar operation takes the single value in register 0 and applies it to each element of the matrix MA. For example,
the Scalar Add operation using two 2x2 matrices, will perform the following:

MA[0, 0] = MA[0, 0] + reg[0]
MA[0, 1] = MA[0, 1] + reg[0]
MA[1, 0] = MA[1, 0] + reg[0]
MA[1, 1] = MA[1, 1] + reg[0]

Code Operation Description
0 Scalar Set MA[row, col] = reg[0]
1 Scalar Add MA[row, col] = MA[row, col] + reg[0]
2 Scalar Subtract MA[row, col] = MA[row, col] + reg[0]
3 Scalar Subtract (reverse) MA[row, col] = reg[0] - MA[r,c]
4 Scalar Multiply MA[r,c] = MA[row, col] * reg[0]
5 Scalar Divide MA[row, col] = MA[row, col] / reg[0]
6 Scalar Divide (reverse) MA[row, col] = reg[0] / MA[r,c]
7 Scalar Power MA[r,c] = MA[row, col] ** reg[0]

Element-wise Operations
An Element-wise operation performs each operation on corresponding elements of matrix MA and MB. For
example, the Element-wise Add operation using two 2x2 matrices, will perform the following:

MA[0, 0] = MA[0, 0] + MB[0, 0]
MA[0, 1] = MA[0, 1] + MB[0, 1]

Micromega Corporation 3 Using the uM-FPU V3.1 Matrix Operations

MA[1, 0] = MA[1, 0] + MB[1, 0]
MA[1, 1] = MA[1, 1] + MB[1, 1]

Code Operation Description
8 Element-wise Set MA[row, col] = MB[row, col]
9 Element-wise Add MA[row, col] = MA[row, col] + MB[row, col]
10 Element-wise Subtract MA[row, col] = MA[row, col] - MB[row, col]
11 Element-wise Subtract (reverse) MA[row, col] = MB[row, col] - MA[row, col]
12 Element-wise Multiply MA[row, col] = MA[row, col] * MB[row, col]
13 Element-wise Divide MA[row, col] = MA[row, col] / MB[row, col]
14 Element-wise Divide (reverse) MA[r,c] = MB[row, col] / MA[r,c]
15 Element-wise Power MA[row, col] = MA[row, col] ** MB[row, col]

Matrix Multiplication
The matrix multiplication performs a matrix multiply of MB times MC and stores the result in MA. The number of
columns in MB must be the same as the number of rows in MC, or the multiply will not be done. The size of matrix
MA will be updated to reflect the rows and columns of the resulting matrix.

0, 0 0, 1 0, 2

0, 0 0, 1 0, 2

1, 0 1,1 1, 2

0, 0

1, 0

•

MB MC MA

Code Operation Description
16 Matrix Multiply Calculate: MA = MB * MC

Identity and Diagonal Matrix
The identity operation stores the value 1.0 in all elements of matrix MA where the row and column numbers are the
same, and stores 0.0 in all other elements. The following diagram shows 3x3 identity matrix:

1.0 0.0 0.0

0.0 1.0 0.0

Row

0

Row

1

Col

0

Col

1

Col

2

0.0 0.0 1.0
Row

2

The diagonal operation stores the value contained in register 0 in all elements of matrix MA where the row and
column numbers are the same, and stores 0.0 in all other elements.

Code Operation Description
17 Identity matrix MA = identity matrix
18 Diagonal matrix MA = diagonal matrix

Micromega Corporation 4 Using the uM-FPU V3.1 Matrix Operations

Transpose
The transpose operation turns rows into columns and columns into rows. The following diagram shows the transpose
of a 2x3 array to a 3x2 array. The size of matrix MA will be updated to reflect the rows and columns of the resulting
matrix.

Code Operation Description
19 Transpose MA = transpose MB

MA

0, 0 0, 1

1, 0 1,1

2, 0 2,1

0, 0 0, 1 0, 2

1, 0 1,1 1, 2

MB

Statistics
The statistical operations provide a fast way of calculating values for a group of registers. The following example
calculates the average value of registers 16 to 31.

SELECTMA,16,16,1 select MA as a 16x1 vector starting at register 16
MOP, 22 calculate average value of elements in MA

Code Operation Description
20 Count reg[0] = count of all elements in MA
21 Sum reg[0] = sum of all elements in MA
22 Average reg[0] = average of all elements in MA
23 Minimum reg[0] = minimum of all elements in MA
24 Maximum reg[0] = maximum of all elements in MA

Matrix copy
The copy operations provide a convenient way to copy the contents of one matrix to another. The size of the
destination matrix will be updated to reflect the rows and columns of the resulting matrix. If there is not sufficient
space at the destination, the copy will not be done.

Code Operation Description
25 CopyAB Copy matrix A to matrix B.
26 CopyAC Copy matrix A to matrix C.
27 CopyBA Copy matrix B to matrix A.
28 CopyBC Copy matrix B to matrix C.
29 CopyCA Copy matrix C to matrix A.
30 CopyCB Copy matrix C to matrix B.

Matrix Determinant
The determinant operation is only valid for 2x2 and 3x3 matrices. It returns the determinant in register 0.

Micromega Corporation 5 Using the uM-FPU V3.1 Matrix Operations

Code Operation Description
31 Matrix Determinant reg[0] = determinant of MA (2x2 or 3x3 matrices only)

Matrix Inverse
The inverse operation is only valid for 2x2 and 3x3 matrices. Matrix MA is set to the inverse of matrix MB.

Code Operation Description
32 Matrix Inverse reg[0] = inverse of MA (2x2 or 3x3 matrices only)

Indexed Load Registers to Matrix
The indexed load register to matrix instructions can be used to quickly load a matrix by copying register values to a
matrix. The byte immediately following the matrix operation specifies the number of index values to follow. An
index value is a signed 8-bit integer specifying one of the registers from 0 to 127. If the index is positive, the value
of the indexed register is copied to the matrix. If the index is negative, the absolute value is used as an index, and the
negative value of the indexed register is copied to the matrix. Register 0 is cleared to zero before the register values
are copied, so index 0 will always store a zero value in the matrix. The values are stored sequentially, beginning with
the first register in the destination matrix.

Code Operation Description
33 Indexed Load Registers to MA load register values to matrix MA
34 Indexed Load Registers to MB load register values to matrix MB
35 Indexed Load Registers to MC load register values to matrix MC

Example:
Suppose you wanted to create a 2-dimensional rotation matrix as follows:

cos

A

-sin

A

sin

A

cos

A

Assuming register 1 contains the value sin A, and register 2 contains the value cos A, the following instructions
create the matrix.

SELECTMA,10,2,2 select MA as a 2x2 matrix starting at register 10
MOP,33,4,2,-1,1,2 create the rotation matrix

Indexed Load Matrix to Matrix
The indexed load matrix to matrix instructions can be used to quickly copy values from one matrix to another. The
byte immediately following the matrix operation specifies the number of index values to follow. An index value is a
signed 8-bit integer specifying the offset of the desired matrix element from the start of the matrix. If the index is
positive, the matrix element is copied to matrix MA. If the index is negative, the absolute value is used as an index,
and the negative value of the matrix element is copied to the destination matrix. Register 0 is cleared to zero before
the register values are copied, so index 0 will always store a zero value in matrix MA. The values are stored
sequentially, beginning with the first register in matrix MA.

Code Operation Description
36 Indexed Load MB to MA load matrix MB values to matrix MA
37 Indexed Load MC to MA load matrix MC values to matrix MA

Micromega Corporation 6 Using the uM-FPU V3.1 Matrix Operations

Example:
Suppose MB is a 3x3 array and you want to create a 2x2 array from the upper left corner as follows:

a b c

d e f

g h i

a b

d e

MB
MA

SELECTMB,20,2,2 select MB as a 2x2 matrix starting at register 20
MOP,36,4,0,1,3,4 copy the 2x2 subset from MA

Indexed Save Matrix to Register
The indexed save matrix to register instructions can be used to quickly extract values from a matrix. The byte
immediately following the matrix operation specifies the number of index values to follow. An index value is a
signed 8-bit integer specifying one of the registers from 0 to 127. The values are stored sequentially, beginning with
the first element in matrix MA. If the index is positive, the matrix value is copied to the indexed register. If the index
is negative, the matrix value is not copied.

Code Operation Description
38 Indexed Save MA to Registers save matrix MA values to registers

Example:
Suppose matrix MA is a 3x3 matrix containing the following values:

a b c

d e f

g h i

MA

The following instruction stores the value a to register 10, e to register 11 and i to register 12.

MOP,38,9,10,-1,-1,-1,11,-1,-1,-1,12 save matrix values to registers

Indexed Save Matrix to Matrix
The indexed save matrix to matrix instructions can be used to quickly extract values from a matrix. The byte
immediately following the matrix operation specifies the number of index values to follow. An index value is a
signed 8-bit integer specifying the offset of the desired matrix element from the start of matrix MA. The values are
stored sequentially in the destination matrix, beginning with the first element in matrix MA. If the index is positive,
the matrix value is copied to the destination matrix. If the index is negative, the matrix value is not copied.

Code Operation Description
39 Indexed Save MA to MB save matrix MA values to matrix MB
40 Indexed Save MA to MC save matrix MA values to matrix MC

uM-FPU V3 IDE support for the MOP instruction
The uM-FPU V3 IDE doesn’t provide high level support for matrix operations, they must be specified using
assembler. There are predefined symbols for the matrix operations that can be used with the MOP instruction. For
example the following instructions initialize all elements of a 2x2 matrix to 1.0.
 e.g.
#asm

SELECTMA, 10, 2, 2
LOADBYTE, 1
MOP, SCALAR_SET

#endasm

A list of the predefined symbols for matrix operations are as follows:
0 SCALAR_SET
1 SCALAR_ADD
2 SCALAR_SUB
3 SCALAR_SUBR
4 SCALAR_MUL
5 SCALAR_DIV
6 SCALAR_DIVR
7 SCALAR_POW
8 EWISE_SET
9 EWISE_ADD
10 EWISE_SUB
11 EWISE_SUBR
12 EWISE_MUL
13 EWISE_DIV
14 EWISE_DIVR
15 EWISE_POW
16 MULTIPLY
17 IDENTITY
18 DIAGONAL
19 TRANSPOSE
20 COUNT

21 SUM
22 AVE
23 MIN
24 MAX
25 COPYAB
26 COPYAC
27 COPYBA
28 COPYBC
29 COPYCA
30 COPYCB
31 DETERM
32 INVERSE
33 ILOADRA
34 ILOADRB
35 ILOADRC
36 ILOADBA
37 ILOADCA
38 ISAVEAR
39 ISAVEAB
40 ISAVEAC

Further Information
See the Micromega website (http://www.micromegacorp.com) for additional information regarding the uM-FPU
V3.1 floating point coprocessor, including:

uM-FPU V3.1 Datasheet
uM-FPU V3.1 Instruction Set

Micromega Corporation 7 Using the uM-FPU V3.1 Matrix Operations

	
	Introduction
	Instruction Summary
	Matrix Operations
	MOP instruction
	Scalar Operations
	Element-wise Operations
	Matrix Multiplication
	Identity and Diagonal Matrix
	Transpose
	Statistics
	Matrix copy
	Matrix Determinant
	Matrix Inverse
	Indexed Load Registers to Matrix
	Indexed Load Matrix to Matrix
	Indexed Save Matrix to Register
	Indexed Save Matrix to Matrix

	uM-FPU V3 IDE support for the MOP instruction
	Further Information

